
MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 56

2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION

 A world-coordinate area selected for display is called a window. An area on a

display device to which a window is mapped is called a viewport. The window defines

what is to be viewed; the viewport defines where it is to be displayed.

(Figure 2.10 A point at position (xw,yw) in a designated window is mapped to

viewport coordinates (xv, yv). So that relative positions in the two areas are the

same.)

Figure 2.10 illustrates the window-to-viewport mapping. A point at position (xw,yw)

in the window is mapped into position (xv, yv) in the associated viewport. To maintain

the same relative placement in the viewport as in the window, we require that

 xv - xvmin = xw - xwmin

 ------------ --------------

 xvmax - xvmin xwmax - xwmin

yw
min

yw
max

xw
max

 xw
min

(xw,yw)

yv
min

yv
max

xv
max

 xv
min

(xv,yv)

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 57

 yv - yvmin = yw - ywmin

 ------------- --------------

 yvmax - yvmin ywmax - ywmin

Solving these expressions for the viewport position (xv, yv), we have

 xv = xvmin + (xw - xwmin)sx

 yv = yvmin + (yw - ywmin)sy

where the scaling factors are

 sx = xvmax - xvmin

 xwmax - xwmin

 sx = yvmax - yvmin

 ywmax - ywmin

Equations A can also be derived with a set of transformations that converts the

window area into the viewport area. This conversion is performed with the following

sequence of transformations:

1. Perform a scaling transformation using a fixed-point position of (xwmin,

ywmin) that scales the window area to the size of the viewport.

2. Translate the scaled window area to the position of the viewport.

 Relative proportions of objects are maintained if the scaling factors are the same

(sx = sy). Otherwise, world objects will be stretched or contracted in either the x or y

direction when displayed on the output device.

2.4 CLIPPING

 Many graphics application programs give the users the impression of looking

through a window at a very large picture. Figure shows the use of this effect in a

program for viewing different portions of a large architectural plan at different scales.

Viewing an architectural plan through windows of different sizes

 This makes use of scaling and translation techniques to generate a variety of

different views of a single representation of a plan.

 To display an enlarged portion of a picture, we must not only apply the

appropriate scaling and translation but also should identify the visible parts of the

picture. This is not straightforward. Certain lines may lie partly inside the visible

A

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 58

portion of the picture and partly outside. We cannot display each of these lines in its

entirety.

 Occurrence of wraparound in drawing a partially invisible triangle. The correct

way to select visible information for display is to use clipping, a process which divides

each element of the picture in to its visible and invisible portions, allowing the

invisible portion to be discarded. Clipping can be applied to a variety of different types

of picture elements such as pointer, lines, curves, text character and polygons.

2.4.1 POINT CLlPPlNG

 Assuming that the clip window is a rectangle in standard position, we save a

point P = (x, y) for display if the following inequalities are satisfied:

 xwmin≤x≤xwmax

 ywmin≤y≤ywmax

 Where the edges of the clip window (xwmin, xwmax, ywmin , ywmax) can be either

the world-coordinate window boundaries or viewport boundaries. If any one of these

four inequalities is not satisfied, the point is clipped (not saved for display).

 Although point clipping is applied less often than line or polygon clipping,

some applications may require a point clipping procedure. For example, point clipping

can be applied to scenes involving explosions or sea foam that are modeled with

particles (points) distributed in some region of the scene.

2.4.2 LINE CLIPPING

 Lines intersecting a rectangular clip region are always clipped to a single line

segment. Figure shows examples of clipped lines.

Before clipping

D

D’

F

F’

E

E’

G

H

I

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 59

After clipping

(Figure 2.11, Example for line clipping)

CLIPPING ENDPOINTS

 Before discussing clipping lines, consider clipping of individual points. If the x

coordinate boundaries of the clip rectangle are at xmin and xmax and the y coordinate

boundaries are at ymin, and ymax, the following conditions must be satisfied for a point

at (x, y) to be inside the clip rectangle.

 xmin <= x <= xmax

 ymin <= y <= ymax

 (xmax,ymax)

 (xmin, ymin)

If any of the above conditions do not hold, the point is outside the clip rectangle.

D’

F’

E’

G

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 60

2.4.2.1 COHEN – SUTHERLAND LINE CLIPPING ALGORITHM

 From the above figure, these lines that are partly invisible are divided by the

screen boundary in to one or more invisible portions but in to only one visible

segment. Visible segment of a straight line can be determined by computing its 2

endpoints. The Cohen- Sutherland algorithm is designed to find these end points very

rapidly but also to reject even more rapidly any line that is clearly invisible. This

makes it a very good algorithm for clipping pictures that are much larger than the

screen.

(Figure 2.12, 9 regions for line clipping)

 The algorithm has 2 parts. The first part determines whether the line lies

entirely on the screen, then it will be accepted and if not whether the line can be

rejected if lying entirely off the screen. If it satisfies none of these 2 tests, then the line

is divided in to 2 parts and these 2 tests are applied to each part. The algorithm

0001 0010

1000

0101 0100 0110

1010 1001

0000

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 61

depends on the fact that every line is entirely on the screen. Or can be divided so that

one part can be rejected.

 We are extending the edges of the screen so that they divide the space occupied

by the unclipped picture in to 9 regions. Each of these regions has a 4 bit code.

Consider line AB, the 4 bit out code for A is 0001

 B is 0000

 CD C is 0000

 D is 0000

 EF E is 0101

 F is 0010

 GH G is 0101

 H is 0100

 If the logical AND of the 2 codes is not zero, then the line will be entirely off

the screen. For example, for line GH, the logical AND of the 2 end points is 0100. it is

not equal to zero, so the line is completely out of the screen.

 If the 4 bit codes for both endpoints are zero, the line lies entirely on the screen.

For example, for line CD, the 4 bit codes for both endpoints C, D are 0000. So the line

lies entirely inside the screen.

If both these tests are not successful, it means that a part of a line is inside and a

part is outside the screen. For example line AB. Then such lines are subdivided. A

simple method of sub division is to find the point of intersection of the line with one

edge of the screen and to discard that part of the line that lies off the screen.

0001 0010

1000

0101
0100 0110

1010 1001

0000

A

B

C

D

E

F

G

H

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 62

For example consider the line

The line AB could be subdivided at C and the portion AC is discarded. We now

have the line BC.

 For line BC, we apply the same tests. The line cannot be rejected, so we again

subdivide it at point D. the resulting line BD is entirely on the screen.

0001 0010

1000

0101 0100 0110

1010 1001

0000

D

B

0001 0010

1000

0101 0100 0110

1010 1001

0000

D

B

C

A

C

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 63

The algorithm works as follows. We compute the out codes of both endpoints

and check for trivial acceptance and rejection. If both tests are not successful, we find

an end point that lies outside and test the out code to find the edge that is crossed and

to determine the corresponding intersection point. We can clip off the line segment

from the outside end point to the intersection point by replacing the outside end point

with the intersection point and compute the outside of this new end point to prepare for

the next iteration.

 For example consider the line segment AD.

0001 0010

1000

0101 0100 0110

1010 1001

0000

D

B

0001 0010

1000

0101 0100 0110

1010 1001

0000

B

A

D C

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 64

 Point A has out code 0000 and point D has out code 1001. The line AD cannot

be accepted and cannot be rejected. Therefore the algorithm chooses D as the outside

point, whose out code shows that the line crosses the top edge and left edge. In our

algorithm we choose the top edge of the screen to clip and we clip AD to AB. We

compute B‘s out code as 0000. In our next iteration, we apply the trivial acceptance/

rejection tests to AB, and the line is accepted and displayed.

Consider another line EI in the following figure.

 EI requires more iteration. The first end point E has out code 0100. The

algorithm chooses E as the outside point and tests the out code to find the first edge

against which the line is cut is the bottom edge, where EI is clipped top FI. In the

second iteration, FI cannot be completely accepted or rejected. The out code of the first

B

A

0001 0010

1000

0101 0100 0110

1010 1001

0000

H

I

G

E

F

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 65

end point, F is 0000, so the algorithm chooses the outside point I that has out code

1010.

 The first edge clipped against is the top edge, yielding FH. H has the

out code 0010. Then the next iteration results in a clip against the right edge to FG.

This is accepted in the final iteration and is displayed.

COHEN- SUTHERLAND LINE CLIPPING ALGORITHM

Typedef unsigned int outcode;

Enum { TOP = 0x1, BOTTOM = 0x2, RIGHT = 0x4, LEFT = 0x8};

0001 0010

1000

0101 0100 0110

1010 1001

0000

H

I

G

F

0001 0010

1000

0101 0100 0110

1010 1001

0000
G

F

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 66

Void CohenSutherlandClipAndDraw(x0, y0, x1, y1, xmin, xmax, ymin, ymax)

Double x0, y0, x1, y1, xmin, xmax, ymin, ymax;

/* Cohen –sutherland clipping algorithm for line P0 = (x0, y0) to P1 = (x1, y1) and

clip rectangle with diagonal from (xmin, ymin) to (xmax, ymax) */

{ /* outcodes for P0, P1 and whatever point lies outside the clip rectangle. */

 outcode outcode0, outcode1, outcodeout;

 Boolean accept = FALSE, done = FALSE;

 Outcode0 = compoutcode (x0, y0, xmin, xmax, ymin, ymax);

 Outcode1 = compoutcode (x1, y1, xmin, xmax, ymin, ymax);

Do {

 If (! (outcode0 | outcode1))

 { /* accept and exit */

 accept = TRUE; done = TRUE;

 }

 else if (outcode0 && outcode1)

 /* logical AND is true, so reject and exit */

 done = TRUE;

 else

 {

 /* failed both tests, so calculate the line segment to clip */

 /* from an outside point to an intersection with clip edge */

 double x, y;

 /* at least one end point is outside the clip rectangle, find it */

 if (outcode0)

 outcodeout = outcode0;

 else

 outcodeout = outcode1;

 /* now find the intersection point */

 /* use formulas y = y0 + slope * (x – x0) */

 /* x = x0 + (1/slope) * y – y0) */

 if (outcodeout && TOP)

 /* Divide line at top of clip rectangle*/

 {

 x = x0 + (x1 – x0) * (ymax – y0) / y1 – y0);

 y = ymax;

 }

 else if (outcodeout && BOTTOM)

 /* Divide line at bottom edge of clip rectangle*/

 {

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 67

 x = x0 + (x1 – x0) * (ymin – y0) / y1 – y0);

 y = ymin;

 }

 else if (outcodeout && RIGHT)

 /* Divide line at right edge of clip rectangle*/

 {

 y = y0 + (y1 – y0) * (xmax – x0) / x1 – x0);

 x = xmax;

 }

 else

 /* Divide line at left edge of clip rectangle*/

 {

 y = y0 + (y1 – y0) * (xmin – x0) / x1 – x0);

 x = xmin;

 }

 /* now we move outside point to intersection point to clip */

 /* and get ready for next pass */

 if (oucodeout == outcode0)

 {

 x0 = x; y0 = y;

 outcode0 = compoutcode (x0, y0, xmin, xmax, ymin, ymax);

 }

 else

 {

 x1 = x; y1 = y;

 outcode1 = compoutcode (x1, y1, xmin, xmax, ymin, ymax);

 }

 }

}while (done == FALSE);

 if (accept)

 drawline (x0, y0, x1, y1);

}

outcode compoutcode (x, y, xmin, xmax, ymin, ymax)

double x, y, xmin, xmax, ymin, ymax;

{

 outcode code = 0;

 if (y > ymax)

 code = code || TOP;

 else if (y < ymin)

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 68

 code = code || BOTTOM;

 if (x > xmax)

 code = code || RIGHT;

 else if (x < xmin)

 code = code || LEFT; return code;

}

2.4.3 POLYGON CLIPPING

 Polygon is an object having closed outlines bounded by straight edges.

An example of polygon clipping is shown below.

Before clipping After clipping

Another example is

(Figure 2.13, Examples for polygon clipping)

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 69

2.4.3.1 SUTHERLAND AND HODGMAN POLYGON CLIPPING ALGORITHM

 It uses a divide and conquers strategy. It solves a series of simple and identical

problems that, when combined, solve the entire problem. The simple problem is to clip

a polygon against a single infinite clip edge. Four clip edges, each defining one

boundary of the clip rectangle successively clip a polygon against a clip rectangle.

Before clipping

 Clip on right Clip on bottom

 Clip on left Clip on top

 (Figure 2.14, Clipping a polygon against successive window boundaries)

 There are four possible cases when processing vertices in sequence around the

perimeter of a polygon. As each pair of adjacent polygon vertices is passed to a

window boundary clipper, we make the following tests: (1) If the first vertex is outside

the window boundary and the second vertex is inside, both the intersection point of the

polygon edge with the window boundary and the second vertex are added to the output

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 70

vertex list. (2) If both input vertices are inside the window boundary, only the second

vertex is added to the output vertex list. (3) If the first vertex is inside the window

boundary and the second vertex is outside, only the edge intersection with the window

boundary is added to the output vertex list. (4) If both input vertices are outside the

window boundary, nothing is added to the output list.

 outin inin

 save v1’,v2 save v2

 inout outout

 save V1’ save none

(Figure 2.15 Successive processing of pairs of polygon vertices against the left

window boundary)

 These four cases are illustrated in Figure. 2.15 for successive pairs of polygon

vertices. Once all vertices have been processed for one clip window boundary, the

output list of vertices is clipped against the next window boundary.

V1

V1’

V2

V2

V1

V2

V1

V
1
’

V2

V1

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 71

SUTHERLAND-HODGMAN POLYGON CLIPPING ALGORITHM

Typedef point vertex; /*point holds double x, y*/

Typedef vertex edge [2];

Typedef vertex vertexarray [MAX];

Static void output (vertex, int *, vertexarray);

Static boolean inside (vertex, edge);

Static vertex intersect (vertex, vertex, edge);

Void SutherlandHodgmanPolygonClip (

Vertexarray invertexarray, /*input vertex array */

Vertexarray outvertexarray, /*output vertex array */

Int inlength, /* no. of entries in invertexarray*/

Int outlength, /* no. of entries in outvertexarray */

Edge clipboundary) /* edge of clip polygon */

{

 vertex s, p; /* start, end point of current polygon edge */

 vertex I; /* intersection point with clip boundary */

 int j; /* vertex loop counter */

 outlength = 0; / start with the last vertex in invertexarray*/

 s = invertexarray [inlength –1];

 for (j = 0; j < inlength; j++)

 {

 p = invertexarray [j];

 if (inside (p, clipboundary)) /* cases 1 and 4 */

 {

 if (inside (s,clipboundary)) /* case 1 */

 output (p, outlength, outvertexarray);

 }

 else

 { /* case 4 */

 i = intersect (s, p, clipboundary);

 Output (i, outlength, outvertexarray);

 Output (p, outlength, outvertexarray);

 }

 }

 else /* case 2 and 3 */

 if (inside (s, clipboundary)) /* case 2 */

 {

 i = intersect (s, p, clipboundary);

 Output (i, outlength, outvertexarray);

 } /* no action for case 3 */

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 72

 s = p; /* advance to next pair of vertices */

 } /* end of for */

}

 /* adds newvertex to outvertexarray and then updates outlength */

 static void output (

vertex newvertex, int *outlength, vertexarray outvertexarray)

{

}

/*checks whether the vertex lies inside the clip edge or not */

static Boolean inside (vertex testvertex, edge clipboundary)

{

}

/*Clips polygon edge (first, second) against clipboundary, outputs the new point

*/

static vertex intersect (vertex first, vertex second, edge clipboundary)

{

}

 The function SutherlandHodgmanPolygonClip() accepts an array invertexarray

of vertices and creates another array outvertexarray of vertices. The function output ()

places a vertex in to outvertexarray.

 The function intersect () calculates the intersection of the polygon edge from

vertex s to vertex p with clip boundary. The function inside () returns true if the vertex

is on the inside of the clip boundary.

2.4.4CURVE CLIPPING

 The bounding rectangle for a circle or other curved object can be used first to

test for overlap with a rectangular clip window. If the bounding rectangle for the object

is completely inside the window, we save the object. If the rectangle is determined to

be completely outside the window, we discard the object. In either case, there is no

further computation necessary. But if the bounding rectangle test fails, we can look for

other computation-saving approaches. For a circle, we can use the coordinate extents

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 73

of individual quadrants and then octants for preliminary testing before calculating

curve-window intersections. For an ellipse, we can test the coordinate extents of

individual quadrants. Figure 2.16 illustrates circle clipping against a rectangular

window. Similar procedures can be applied when clipping a curved object against a

general polygon clip region. On the first pass, we can clip the bounding rectangle of

the object against the bounding rectangle of the clip region. If the two regions overlap,

we will need to solve the simultaneous line-curve equations to obtain the clipping

intersection points.

 Before Clipping After Clipping

(Figure 2.16, Example for curve clipping)

2.4.5 TEXT CLIPPING

 There are several techniques that can be used to provide text clipping in a

graphics package. The clipping technique used will depend on the methods used to

generate characters and the requirements of a particular application. The simplest

method for processing character strings relative to a window boundary is to use the all-

or-none string-clipping strategy shown in Figure 2.17. If all of the string is inside a

clip window, we keep it. Otherwise, the string is discarded. This procedure is

implemented by considering a bounding rectangle around the text pattern. The

boundary positions of the rectangle are then compared to the window boundaries, and

the string is rejected if there is any overlap. This method produces the fastest text

clipping.

Before Clipping After Clipping

 (Figure 2.17,Text clipping using a bounding rectangle about the entire string)

STRING 1

STRING 2 STRING 2

MODULE II MCA - 301 COMPUTER GRAPHICS ADMN 2009-‘10

 Dept. of Computer Science And Applications, SJCET, Palai 74

 An alternative to rejecting an entire character string that overlaps a window

boundary is to use the all-or-none character-clipping strategy. Here we discard only

those characters that are not completely inside the window (Figure 2.18). In this case,

the boundary limits of individual characters are compared to the window. Any

character that either overlaps or is outside a window boundary is clipped.

 Before Clipping After Clipping

 (Figure 2.18, Text clipping using a bounding rectangle about individual characters)

 A final method for handling text clipping is to clip the components of individual

characters. We now treat characters in much the same way that we treated lines. If an

individual character overlaps a clip window boundary, we clip off the parts of the

character that are outside the window (Figure 2.19). Outline character fonts formed

with line segments can be processed in this way using a line clipping algorithm.

Characters defined with bit maps would be clipped by comparing the relative position

of the individual pixels in the character grid patterns to the clipping boundaries.

 Before Clipping After Clipping

 (Figure 2.19 Text clipping performed on the components of individual characters)

STRING 1

STRING 2

STRING 3

 ING 1

STRING 2

 RING 3

STRING 1

STRING 2

STRING 3

 RING 1

STRING 2

 TRING 3

